

AFRL-IF-RS-TR-2002-141
Final Technical Report
June 2002

COMPUTATIONAL IMMUNOLOGY FOR THE
DEFENSE OF LARGE SCALE SYSTEMS

Odyssey Research Associates, Incorporated

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. F163

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and
should not be interpreted as necessarily representing the official policies, either
expressed or implied, of the Defense Advanced Research Projects Agency or the U.S.
Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 This report has been reviewed by the Air Force Research Laboratory,
Information Directorate, Public Affairs Office (IFOIPA) and is releasable to the
National Technical Information Service (NTIS). At NTIS it will be releasable to
the general public, including foreign nations.

 AFRL-IF-RS-TR-2002-141 has been reviewed and is approved for
publication.

APPROVED:

 JOHN FELDMAN
 Project Engineer

 FOR THE DIRECTOR:

 WARREN H. DEBANY, Technical Advisor
 Information Grid Division
 Information Directorate

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
 June 2002

3. REPORT TYPE AND DATES COVERED
Final Aug 97 – Aug 99

4. TITLE AND SUBTITLE
COMPUTATIONAL IMMUNOLOGY FOR THE DEFENSE OF LARGE SCALE
SYSTEMS

6. AUTHOR(S)
Carla Marceau, Matthew Stillerman, Maureen Stillman, Stephanie Forrest

5. FUNDING NUMBERS
C - F30602-97-C-0216
PE - 62301E
PR - F163
TA - 40
WU - 04

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Odyssey Research Associates, Incorporated
Cornell Business & Technology Park
33 Thornwood Drive, Suite 500
Ithaca New York 14850

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency AFRL/IFGB
3701 North Fairfax Drive 525 Brooks Road
Arlington Virginia 22203-1714 Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2002-141

11. SUPPLEMENTARY NOTES
AFRL Project Engineer: John Feldman/IFGB/(315) 330-2664/ John.Feldman@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)

This report describes the application of the computational immunology approach to a distributed object systems. The
hypothesis tested was that one could characterize normal behavior of the application itself in terms of inter-object
messages, and use that characterization to successfully detect rogue client attacks on the application. The goals of the
research were to test and demonstrate the feasibility of intrusion detection at the application level in distributed object
systems. In particular, we worked with applications built on the Common Object Resource Broker Architecture
(CORBA). The report shows that the computational immunology approach reliably detects attacks on the Domain Name
Server that seriously disrupt Internet service.

The report analyzes the components required for a definition of "self' that is applicable to computer programs. The
report also conducts experiments that show that a straightforward definition of "self" can detect rogue client attacks on
CORBA systems. The project resulted in building a prototype system to aid in the analysis of experimental data and
helped generate descriptions of normal application behavior. The prototype intrusion detection system for CORBA can
be used wit] a broad class of definitions of "self".

15. NUMBER OF PAGES
69

14. SUBJECT TERMS
Intrusion Detection, Computational Immunology, Anomaly Detection, Distributed Systems,
Corba Intrusion Detection, CIDF Standard. 16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

i

Table of Contents
Table of Contents ... i
Figures... iii
Tables ...iv
1 Introduction ... 1
2 Lessons Learned... 3
2.1 The Threat of a Rogue Client Attack ... 3
2.2 Computational Immunology Detects Rogue Client Attacks ... 4
2.3 Local vs. Statistical Anomaly Detection .. 4
2.4 Defining “Self” in Computational Immunology.. 4
2.5 Issues In Empirically Creating A Self Database .. 5
2.6 Efficient Implementation Of A Self Database .. 6
2.7 Negative vs. Positive Detection ... 6
3 Research at ORA: Applying Computational Immunology to Distributed Object Applications
... 6
3.1 A Definition of Self For CORBA Applications... 7
3.2 Experimental Design.. 11
3.3 Results... 13
3.3.1 The PersonnelTracker experiment... 13
3.3.2 The LPA Vision experiment. .. 19
3.3.3 Detection efficiency and false-positive rate.. 22
3.4 Discussion ... 23
4 Research at the University of New Mexico ... 24
4.1 Data Modeling.. 24
4.2 Real-Time Monitoring and Response .. 27
4.3 Papers Published ... 28
5 Software Design and Development .. 28
5.1 The Design of the CORBA Immune System... 28
5.1.1 What the system does... 29
5.1.2 Overview of how the system works.. 29
5.1.3 Implementation overview .. 30
5.1.4 Finite-state machine implementation of the self database ... 32
5.2 The Design of the IDA .. 35

ii

6 CIDF Promotion to the Government and Commercial Sectors.. 38
6.1 Summary of Vendor Visits and Accomplishments... 38
6.1.1 HP (October 5, 1998) .. 39
6.1.2 Centrax (August 5, 1998).. 39
6.1.3 Network Associates (October 5, 1998) ... 40
6.1.4 Newbridge (November 17, 1998).. 40
6.1.5 Axent Technologies (November 16, 1998) .. 40
6.1.6 CISCO (August, 1998)... 40
6.1.7 ISS ... 40
6.1.8 SAIC... 40
6.2 Vendor Questionnaire .. 41
6.3 Lessons Learned .. 42
7 Conclusion ... 43
8 References .. 45
Appendix ... 47
Questionnaire Responses from Intrusion Detection Vendors.. 47
Axent Technologies.. 47
Centrax ... 49
HP... 52
Network Associates.. 56
SAIC.. 59

iii

Figures
Figure 1. Coverage for N = 1. .. 15
Figure 2. Coverage for N = 2. .. 15
Figure 3. Coverage for N = 3. .. 16
Figure 4. Coverage for N = 6. .. 16
Figure 5. Anomaly graph for 55.37, N = 2. .. 18
Figure 6. Anomaly graph for 51.24, N = 2. .. 18
Figure 7. Anomaly graph for 51.24, N = 3. .. 19
Figure 8. Coverage graph for N = 1. .. 20
Figure 9. Coverage graph for N = 2. .. 21
Figure 10. Coverage graph for N = 3. .. 21
Figure 11. Anomaly graph for normal traces... 23
Figure 12. Overview of the CORBA Immune System. .. 30
Figure 13. A partial tree for the example string... 33
Figure 14. Self-detector generated by the IDA. .. 35
Figure 15. Self-detector and the R/A Module. ... 36
Figure 16. User interface of the IDA.. 37

iv

Tables
Table 1. Size of self database as a function of window width. .. 14
Table 2. Summary of PersonnelTracker experimental results. ... 17
Table 3. Results of the LPA Vision experiment. ... 22
Table 4. Company and commercial product matrix... 39
Table 5. Requirements for intrusion detection standards. ... 41
Table 6. Openness of product and security services.. 42

1

1 Introduction
This report describes the collaborative research in the area of intrusion
detection performed by Odyssey Research Associates in collaboration with
Stephanie Forrest at the University of New Mexico.

Our approach to intrusion detection is based on Forrest’s pioneering work in
computational immunology, that is, the design of computer defense systems
inspired by the vertebrate immune system. (An introduction to
computational immunology can be found in [4].) Although vertebrate
immune systems offer many promising features, the research in this project
focuses on the following three properties: anomaly-based intrusion-detection
systems that characterize programs by their behavior, which is determined
empirically. We adopt this approach because it is unrealistic to require the
application developer either to include checks for intrusions in the
application code or to write specifications for how he expects the code to be
used. In our opinion, approaches that require extra work from the
application developer—work that is not directly concerned with application
functionality—are bound to fail.

In the current project, we are particularly interested in applying the
computational immunology approach to distributed object systems, a
relatively new and increasingly popular technology for building applications.
Intrusion detection at the application level can complement traditional
intrusion detection and other computer defenses such as access controls
that protect host machines and networks. In particular, application-level
intrusion detection may have a special role in fighting insider attacks, or
misuse of the application; such attacks are more common than external
attacks and pose a significant threat to our military and industrial
infrastructure. In this report, the term “intrusion detection” also includes
“intrusions” in the form of insider attacks.

 We are interested particularly in two kinds of attack on distributed object
systems. These are the rogue client attack and misuse attacks. Modern
distributed object systems, with well-documented interfaces, give attackers
access to the “insides” of an application. For example, a complex business
application might consist of a front-end user interface, which establishes the
user’s identity and determines what functionality he is allowed to exercise,
and a back-end, which is a database server. The correct functioning of the
application depends on the back end being able to assume that requests
from the front end are legitimate. Such an assumption is unwarranted if the
user can write his own front end, which we call a rogue client, and use that
instead of the authorized one. One might imagine that it is too difficult to

2

write a new front end, but that is not the case. A rogue client can easily be
generated either by modifying the normal front end or by using a simple
testing tool that exercises the back end.

Our hypothesis was that we could characterize normal behavior of the
application itself in terms of interobject messages, and use that
characterization to successfully detect rogue client attacks on the
application. In the example case, an “immune system” would be able to
distinguish between the legitimate front end and unauthorized ones, and
could reject requests from the latter.

We further hypothesized that the same mechanism could be helpful in
detecting misuse attacks, which occurs when an authorized user of the
system has legitimate access but uses it in ways that exceed his authority.
For example, consider a parts-planning application. A parts planner may
have access to the central parts-planning database, but is expected only to
review and manage those parts entrusted to him. Entering spurious orders
for parts managed by a co-worker is not authorized.

The goals of our research project have been, in brief,
• To test/demonstrate the feasibility of intrusion detection at the

application level in distributed object systems. In particular, we
worked with applications built on the Common Object Resource Broker
Architecture (CORBA) [12] as a typical platform for building distributed
object applications.

• To verify that immune-style anomaly detection is a reasonable way to
detect intrusions at the application level.

In this report, we describe the work that we did and our results to date. Our
major results are described in Section 1. Briefly, we

• showed that the computational immunology approach reliably detects
attacks on the Domain Name Server that seriously disrupt Internet
service;

• analyzed the components required for a definition of self that is
applicable to computer programs and reported the analysis in
Communications of the ACM [15];

• conducted experiments that show that a straightforward definition of
self can detect rogue client attacks on CORBA systems;

• built a prototype system to aid in the analysis of experimental data and
generate descriptions of normal application behavior;

• built a prototype intrusion detection system for CORBA that can be
used with a broad class of definitions of self; and

• participated in a successful demonstration of intrusion detection
systems communicating by means of the Common Intrusion Detection
Framework (CIDF) protocol [14].

3

Additionally, in cooperation with other researchers in the area of intrusion
detection, we worked on the CIDF definition and promoted the concept of
standards for cooperation among intrusion detection systems.

The remainder of this report is organized as follows. Section 2 summarizes
the lessons we learned from this research effort. Section 3 describes our
ongoing experiments on the definition of self at Odyssey Research
Associates; Section 4, the work at the University of New Mexico. Section 5
describes the design of the CORBA Immune System, our system for
intrusion detection for CORBA applications. Section 6 describes our work
on the CIDF standard. An appendix contains the results of a survey of
intrusion detection vendors, undertaken as part of the CIDF promotion
effort.

2 Lessons Learned
We applied intrusion detection techniques to the problem of protecting
distributed applications. Our experiments showed that the computational
immunology approach can effectively protect a large class of such
applications against certain important kinds of attacks. By implementing a
system based on computational immunology, we also learned about the
obstacles that remain before practical immunology systems are feasible.

2.1 The Threat of a Rogue Client Attack
Distributed object systems with published interfaces support the
development of open, modular applications. However, some applications are
designed with close cooperation between their parts. The application
designer often finds it advantageous to create one module that maintains
certain invariants, on which other modules then rely. (In fact, this kind of
design is commonplace.) For example, module M may maintain the invariant
that the value of debits submitted equals the value of credits. A program
masquerading as M can compromise the entire application by submitting
unbalanced credits or debits. We call such a module a rogue client.

Security features for distributed applications typically include encryption
and (user and/or host) authentication, but do not ensure that the client
sending a message is actually executing the expected code. For example,
such assurance is not part of the CORBASEC security standard for CORBA
[13]. Behavioral-based intrusion detection, such as the CORBA Immune
System, can provide such supplementary assurance.

4

2.2 Computational Immunology Detects Rogue Client Attacks
Our experiments showed that the computational immunology approach
(detect anomalies by comparing actual behavior against an empirically
derived norm) detects rogue clients. We performed the experiments using
the Orbix implementation of CORBA, but the results apply to any distributed
object-oriented platform.

The CORBA Immune System detects anomalies based solely on the request
method; parameters to the requests are ignored. Because it detects
anomalies based on the sequence of requests from client to server, it is
effective with applications that support a sufficiently rich set of methods. We
encountered one (military) application that supported a single method (which
might be called “do_all_work”); all information about the work to be done
was encoded in the parameters to that operation. Our method could be
extended to include parameters to the requests. Whether it is worth doing
so depends on the number of applications that employ a similar encoding.

2.3 Local vs. Statistical Anomaly Detection
Our first attempts at anomaly detection measured the percentage of
anomalous events in the entire sequence of requests from client to (server)
object. We abandoned this attempt, and we are convinced that it is
unworkable. Any attempt to characterize a client based on the entire
sequence of its requests to a given server is doomed to fail. It may well be
that only a small portion of a rogue client is anomalous. For example, it
would be a simple matter for an insider to modify a legitimate client program
so that most of the program would behave in a normal way. Only a small
part would be anomalous. By running the program normally for a long time,
an attacker could make the percentage of abnormality arbitrarily small.

2.4 Defining “Self” in Computational Immunology
Computational immunology is based on a definition of self, or “normal.” We
have found that any such definition has four components: focus, data
stream, projection, and detector algorithm. Focus describes what entity can
be either normal or anomalous. In our case, the focus is the client that
sends requests to a distributed object. Data stream is the source of data
used to differentiate between normal and anomalous (or self and non-self).
Abstraction describes how the data stream can be divided into equivalence
classes that discriminate between normal and anomalous. The detector
algorithm describes how to decide when an entity is sufficiently anomalous
that it can be considered an attack.

Most research efforts in computational immunology to date have focused on
the last two of these four components. However, the first two are the most

5

important. Once we had identified the data stream of client/server requests,
no great ingenuity was required to find a projection and a detection
algorithm. In our CORBA system, we experimented with the sliding window
algorithm, varying the width N of the window. Since CORBA requests are
fairly coarse-grained, we could detect anomalies for all values of N greater
than 1. Values larger than 3 simply made it harder to collect enough
training data to cover all normal behavior. Given the right data stream,
surprisingly weak algorithms are sufficient [16].

2.5 Issues In Empirically Creating A Self Database
The great challenge in developing an empirical self database is creating the
description of “normal,” which we call the self database. The self database
problem has two parts: ensuring that the training data covers all normal
behavior, and maintaining the self database.

First is the difficulty of collecting enough training data to cover all normal
behavior—we call this obtaining coverage. Normal data can be generated
either synthetically (by a program or script) or empirically by users going
about their normal activity. Each method has its inherent difficulties.
Synthetic normal is a guessing game as to what is normal. Empirical normal
also has its risks. Suppose training is conducted during a time when work
is focused on a relatively small subset of legitimate activity. The result is
reminiscent of the joke about the man with 20 years experience;
unfortunately, it was the same year of experience repeated 20 times. The
test users must exercise the system doing a broad spectrum of real tasks.
However, with both methods, there is always the question, “What normal
activity has been left out?” Empirical normal also poses the risk that an
attack might occur during training—it is difficult to ensure that this will not
happen.

The second problem is that both methods are labor intensive. Gathering
empirical data and evaluating whether the normal has been obtained
requires significant input from a highly trained person. More research is
needed on how to automate the generation and maintenance of the self
database. This problem is exacerbated by the fact that the self database
needs to be recomputed with every release and every installation (the actual
database content depends in general on installation parameters).

One possible solution to the problem of maintaining the self database is
incrementally aging and modifying it as new releases appear and standard
usage behaviors change. It is, of course, desirable to do this without having
to recompute the entire database.

6

2.6 Efficient Implementation Of A Self Database
The sliding window algorithm for program behavior combines conceptual
simplicity with effectiveness. Recent work at the University of New Mexico
has shown that more complicated algorithms are not needed [16]. On the
other hand, researchers have experimented with even simpler algorithms in
the search for increased efficiency. The risk is that such simple algorithms
may increase the likelihood of false negatives, much as very small values of
N do.

We show in Section 5.1.4 that the sliding window database can be
constructed in the form of a finite state machine (FSM). Given the next item
in the data stream, the FSM declares the window ending at that element
normal or anomalous; it then proceeds to the next state. This provides a
very efficient implementation of the sliding window algorithm.

Previously, it was thought that an FSM implementation was infeasible,
because of the explosion of states that seemed to be required to recover from
inputs that are not in the self database (e.g., see [6]).

Furthermore, the FSM can be constructed on the fly as training data is
entered, thus making feasible an automatic switch between training mode
(building the self database) and detection mode (testing data against the self
database). This on-the-fly training should enable the system to adapt to new
behaviors.

2.7 Negative vs. Positive Detection
Our approach catches rogue attacks, but it does not give any further
information about the attack. All that the detector “knows” about the rogue
client is that it is not the normal client. The vertebrate immune system is
smarter. It would be possible for the CORBA Immune System (or any
anomaly-based intrusion detection system) to capture the identifying
markers for the rogue client and store them in a “rogues’ gallery,” for future
identification. Rogues’ gallery information could be shared with other
servers, much as virus information is today, and some form of positive
detection could be used for known rogues.

3 Research at ORA: Applying Computational Immunology to
Distributed Object Applications

The central idea of “computational immunology” is anomaly detection based
on a concept of “self” and distinguishing self from other. We spent some
time examining the notion of a definition of self in a computational
environment. “Self” has been defined for a variety of different entities. What

7

constitutes a definition of self in general, and for distributed applications in
particular? This work, summarized in Section 3.1, was published in
Communications of the ACM [15].

Testing our definition of self was not a trivial task. Networks and operating
systems “enjoy” an established body of known exploits, against which an
intrusion detection system can be tested. There is no such collection of
attacks on distributed applications. Therefore, we had to find and/or create
an application, as well as attacks against it. This proved to be easier for
rogue client attacks than for misuse attacks.

We experimented with a large commercial application and with a small
application that we wrote ourselves. The experiments that we performed are
described in Section 3.2. The results are in Section 3.3. We discuss them
further in Section 3.4.

3.1 A Definition of Self For CORBA Applications
To define “self” (or normal behavior) for distributed object applications, we
first formulated essential characteristics of Stephanie Forrest’s definition of
self for Unix processes and then applied that understanding to CORBA
applications.

There are several examples of definitions of self. Vertebrate immune systems
are (of course) examples, and Stephanie Forrest’s work on a definition of self
for Unix processes is well known. Other work by Forrest has produced
successful definitions of self in quite different areas, such as detection of
computer viruses and novelty detection in time-series data. In all of these
cases, we generally observe some empirically-formed characterization of
normal, together with an algorithm for comparing observations “in the field”
with that characterization.

We abstracted the concept of a definition of self in order to isolate its
components. A paper describing this work appeared in the July 1999, issue
of Communications of the ACM [15]. To use the immunological technique,
details of how that characterization is formed and how that comparison is
made must be settled. These choices are what we call the “definition of self.”
The following discussion assumes some familiarity with Forrest’s work on
computer immunology, e.g. [4].

Here we briefly describe the components of a definition of self and use as an
example our current definition of self for CORBA applications, a definition
that is analogous to Forrest’s definition of self for Unix processes. The four
components are focus, data stream, abstraction, and detection algorithm.

Focus. The first component of a definition of self is the entity whose “self”
we are describing. Using biological terms, we need to define the organism to

8

be defended—in this case, a CORBA application—and the “cell”—that is, that
entity within the application that we will examine to ascertain if it is normal.
CORBA applications use a client/server model of communication: clients are
programs that invoke the operations of objects, while servers are processes
that own and manage objects. An application might have one or more
servers. Each server manages objects of a specific type or types. As
discussed earlier, we decided to focus on application clients as seen from the
vantage point of application servers. We want to instrument those
application servers that manage important resources, so that we can detect
malicious client actions. In particular, we focus on each client/server pair,
which is called a connection.

Data collection. The second component of a definition of self is defining
what observable aspect of the “cell” we can use to distinguish normal from
abnormal behavior. We chose to look at the message traffic between clients
and servers within the application. CORBA defines the conventions of that
traffic and ways for us to monitor it, so it is possible to construct a generally
applicable system based on that communication. In addition, the traffic is
essential to getting things done, and so should tend to expose misuse of the
application.

We used the Orbix Object Request Broker (ORB) [9] for our experiments.
Orbix provides a general facility for intercepting messages called filters. A
filter is a C++ class that the user subclasses and instantiates within a server
or client program. Orbix interposes the instantiated filter in the message
path, where it can observe and act on each message. Our experimental
setup records information about the requests in a file. Many other ORBs
provide a facility similar to filters. Interceptors are a standard for such
facilities that has recently been adopted by the OMG. Note that filters (and
eventually interceptors) are also used by our CORBA Immune System
prototype to detect messages as part of an operational intrusion detection
system (see Section 5.1.3 and [11]).

It is essential to be able to instrument the application in a non-intrusive way
so as not to require a lot of work on the part of application developers, who
have scant free time to devote to intrusion detection. As discussed earlier,
CORBA in general and Orbix in particular provide convenient ways to
monitor message traffic between client and server. Thus, for example, in the
experiments described later (see Section 3.2), we were able to collect traffic
data for a commercial application at the developer’s office without interfering
with the developers’ work.

Abstraction. Messages are extremely diverse, and thus not readily
comparable. A definition of self includes a way to define equivalence classes
on the message data that are useful in discriminating between normal and

9

abnormal usage. The equivalence class of a sequence of messages is
discernable from (and defined by) its signature, an abstraction (or projection)
of the message data. By extension, we speak of the “signature of a
connection.”

The abstraction we are currently investigating depends only on the sequence
of requested methods from the client to the server, and ignores such details
as the arguments, the time of the request, and so on. Furthermore, this
abstraction only preserves local sequentiality: The signature of the
connection is the set of all substrings of length N of this sequence, as
obtained by a sliding window algorithm (as described in [5]). Following
Forrest, we define the self database as the union of all signatures (i.e., of
those sets) encountered during normal operation.

In practice, as with all anomaly-based intrusion detection systems, we posit
a training period, during which we collect data from presumably normal
connections. Their signatures comprise the self database.

Note that although our definition of self is closely modeled on Forrest’s
definition for Unix processes, there is at least one important difference. Unix
kernel calls are relatively fine-grained. CORBA operations (methods on
distributed objects), by contrast, tend to be coarser-grained. This is because
in a distributed system, developers know that a request to an object may
involve interhost communication, which is much more expensive than a
Unix kernel call. One way to look at our research is that we are studying
how to use shorter sequences of more powerful requests for computer
immunology.

An important variable in the sliding window algorithm is the size of the
window, since this has a dramatic effect on both the size of the self database
and the effectiveness of anomaly detection. See Section 3.3.1.1 for a
discussion of the effect of window size in our experiments.

Detection algorithm. The first stage of detection is to see if each of the
substrings obtained at runtime from a connection is in the self database.
The result is a sequence1 of yes/no values. A fast finite state machine
algorithm for computing this Boolean sequence is described as part of the
architecture of the CORBA Immune System (see Section 5.1.4).

It is necessary to obtain from the yes/no sequence some overall anomaly
measure for the connection that at any one time can tell us how closely the
connection as a whole conforms to the self database. Attacks tend to be

1 The sequence preserves the order in which these substrings occur on the
connection, as the events are viewed through a sliding window.

10

characterized by many anomalies bunched together. We used Forrest’s
locality frame measure so that our measure would be sensitive to bunching.
The locality frame measure is computed as follows. Consider a sequence of
events, e1, e2, e3, …. Events e1 through eN define the first window of
values. If that sequence is not in the self database, then the sequence is
anomalous. Sliding the window, we consider e2, …, e(N + 1). Again, it may
be anomalous or not. Looking at the first L anomaly values (where L is the
locality frame size), we can count how many of them are anomalous—this
number is the locality frame measure. A high locality frame measure
indicates that a large number of anomalies occur together, making an attack
more probable. In this section, we use a locality frame size of 20.

In practice, even after extensive training, we can expect a certain number of
mismatches between connections encountered in operation and the self
database that we obtain from training. The question is, how bad does the
mismatch have to be before we suspect an intrusion? We postulate a
threshold value for the anomaly measure that can distinguish between
normal variation and the degree of anomaly that characterizes an intrusion.
When attack connections have clearly different anomaly values from normal
connections, it should be possible to define good distinguishing threshold
values.

In summary, our candidate definition of self for CORBA applications can be
characterized by the following choices in the above four categories.

• We focus on the clients of certain important servers, which we call the
instrumented servers.

• We collect data about requests from clients to the instrumented
servers.

• We examine in particular the method being requested. The sequence of
requested methods between each client/server pair is scanned through
a sliding window to extract all fixed-length substrings. The sequence of
substrings is our abstraction (signature) of the client/server pair.

• Our detection algorithm is as follows. Each of these substrings is
compared with a database of substrings found during a training period,
during which we assume that no intrusions are occurring. If the
substring exactly matches an entry in the database, it is considered
normal and its anomaly value equals zero. Otherwise, the substring is
considered anomalous, and its anomaly value is 1. The sequence of
anomaly values for each client/server pair is aggregated continuously
into a running anomaly measure, sensitive to both the number of
anomalies seen and how recently (in the sequence) they occurred. We
are ultimately concerned with local values of the anomaly measure for
each connection, and whether those values exceed a threshold.

11

3.2 Experimental Design
In this section, we discuss the experiments we performed to test our
candidate definition of self for CORBA applications.

For any intrusion detection system, two primary concerns are detection
efficiency and false alarm rate: Given that an intrusion occurs, what is the
likelihood that it will be detected? What fraction of IDS alarms corresponds
to real intrusions? Our experiments, therefore, are of two types:

• Running the IDS algorithm with data that definitely contains an
intrusion to see if it is detected.

• Running the IDS algorithm with data that does not contain any
intrusions to see if false alarms are raised.

The system operates in two phases: During the training phase, message
traffic is collected and characterized concisely. This characterization serves
as a standard of normal behavior during the detection phase, when similar
data, possibly reflecting an intrusion, is collected.

Our IDS is intended to work with CORBA applications—to detect when those
applications have been compromised or are being abused. We therefore
tested the IDS algorithm with two CORBA applications, a large commercial
application called LPA Vision [10] and a small application developed at ORA
called PersonnelTracker. Both applications are hosted on the Orbix ORB.2

LPA Vision, developed by LPA Software of Rochester, New York, is widely
used by parts planners to predict and control the inventory of parts for a
company. Typical activities for a planner include

• extrapolating demand and supply of parts into the future,
• ordering more parts, or adjusting existing orders, to correct anticipated

imbalances,
• reconciling differences between projected and actual demand,

considering alternative forecasting methods, and
• generating reports on the current state of the parts inventory and

planning system.

Working with LPA Software, we instrumented the LPA Vision servers and
clients, as described earlier. In several sessions, the software was then

2 Attempts to obtain a suitable military application did not succeed. Two
applications that were available to us proved to be unsuitable because the request
vocabulary of the servers was very small. In one case, there was a single request,
on the order of “do all work.” All pertinent information was in the arguments to the
requests—unfortunately, the Orbix implementation we were working with did not
permit examination of the arguments by our interceptor.

12

exercised in a manner similar to its intended use. LPA Vision is driven by a
database of parts and other planning artifacts. In these experiments, we
used realistic databases provided by LPA Software. Time-stamped records of
messages sent and received were written to files and later analyzed offline.

We also simulated attacks on LPA Vision. We designed two scenarios for
plausible attacks on the program, in consultation with LPA Software. The
scenarios, which were intended to be as realistic as possible, describe a
malicious insider taking specific “planning” actions that would ultimately
cause harm to the company if left uncorrected. In the first of these, the
perpetrator uses the standard LPA Vision interfaces to do this, after (we
imagine) discovering an unattended terminal already logged in and running
the software.

In the second scenario, the perpetrator causes a very similar form of
damage, using a “rogue client.” A rogue client is one that an attacker writes
to make arbitrary requests of the back-end database. The rogue client can
directly invoke operations on the internal objects of the application; it thus
circumvents program logic embedded in the legitimate client.

The other CORBA application that we used in our experiments is the
PersonnelTracker. This distributed program is a communication tool that
gathers information from employees about their location or status (e.g. “in
the office,” “at lunch”) and makes the information available to other
employees. It was written at ORA to demonstrate the CORBA Immune
System, and it represents a broad class of applications in which a front end
interacts with the user and updates a back-end database. Security concerns
with this program, which form the basis for possible “attacks,” are

• Privacy—users control who can see their status
• Integrity—preventing malicious alteration of a user’s status

Users of the application must log in with an application password to change
their own status or to view the status of others. The application relies on
this authentication for access control to maintain privacy and integrity.

ORA employees used the PersonnelTracker application intermittently over a
period of several weeks, as data was collected. During the training period,
the application was not secretly “hacked” or abused. After the training
period, a rogue client program was used to attack the server. We chose a
sample of traces (records of connections) from the normal data to use as
official training data. After eliminating some uninteresting polling requests,
the training data represents 171,673 requests from 49 traces. Other normal
traces were used to test for false positives. We checked for false negatives in
interactive sessions (not recorded). For any sliding window of width greater
than 1 (see below), it was easy to set a threshold value that could distinguish
between normal and rogue traces.

13

In both experiments, we used the traces obtained during training to define
the self database (or “normal”). The attacks were then compared with the
self database to check for misses. Finally, additional normal traces—not
part of the training data—were compared with the self database to check for
false alarms.

3.3 Results
The attacks that we mounted on the candidate applications fell into roughly
two categories: rogue clients and simulated abnormal use of application
clients. The rogue clients are representative of direct attacks on the
application database, attacks that are made feasible by the distributed object
model for applications. Abnormal use of application clients is more like
traditional attacks on privileged Unix processes: the attacker attempts to
subvert the unaltered application. Such attacks may involve “stolen”
passwords (an unauthorized user acting in the place of an authorized one) or
unusual activity (e.g., multiple login attempts, possibly in order to guess a
password).

We can summarize our results as follows:
• Our candidate definition of self for CORBA applications was able to

detect some kinds of rogue clients. Even when a programmer familiar
with the application tried to imitate the application in a rogue client (in
order to confuse the intrusion detection algorithm), the algorithm could
detect differences.

• We were unable to obtain conclusive results for misuse attacks. The
LPA Vision application is very large, and we were unable to perform
enough training to “cover” normal usage. There is no concept of
misuse for the PersonnelTracker. No misuse attacks are included here.

• The choice of window size is a matter of convenience. It does not
seriously affect the ability to detect intrusions. For very small window
sizes, the false negative rate is high, but once a certain minimum value
has been reached, increasing window size merely increases the length
of time required to achieve coverage.

3.3.1 The PersonnelTracker experiment

3.3.1.1 Window size (N) and coverage
Aware of Stephanie Forrest’s work with Unix processes, we first tried sliding
window widths between 6 and 12. We found that for the PersonnelTracker
application, a width of 2 was adequate to avoid most false alarms, and 3 to
eliminate them. These values are much smaller than Forrest obtained for
Unix processes, no doubt because of the coarser granularity of CORBA

14

object requests. We suspect that values in this range would generally apply
to CORBA applications.

We believe that the self database naturally consists of many strings of
different lengths, corresponding to fragments of the client code (fragments of
straight-line code connected by conditionals, loops, and subprogram calls).
Using a fixed N, which is convenient for detection, can only roughly
approximate this natural database. If we pick a large value for N, relative to
the natural database, then we are really trying to detect pairs of the strings
in the natural self database. The result is rapid growth in the size of the
(approximate) self database—or, alternatively, the inability to achieve
coverage.

Table 1 shows the size of the self database as a function of N. Note that a
window width of one simply records the different possible requests.

N Size of self database Coverage?
1 35 Yes

2 130 Yes

3 256 Yes

4 385 ?

5 504 No

6 614 No

Table 1. Size of self database as a function of window width.

Figure 1through Figure 4 show the effect of window size (N) on our ability to
achieve coverage. Each graph shows the growth of the number of distinct
self database values as requests in the training data are processed. For
example, for N = 2, the graph shows that the self database quickly reaches a
size of 60, but does not reach size 120 until about 100,000 requests in the
training data have been processed. Notice that for values of N that are “too
small” (1) coverage is achieved quickly (at the expense of false negatives).

15

Figure 1. Coverage for N = 1.

Figure 2. Coverage for N = 2.

16

Figure 3. Coverage for N = 3.

Figure 4. Coverage for N = 6.

17

3.3.1.2 Anomaly values
Table 2 provides an overview of results from the PersonnelTracker
experiment. The traces in the table are identified by code names. For each
trace, Table 2 gives the length and the minimum and maximum locality
frame values. (Recall that the locality frame values gives a local measure of
anomalousness, rather than an overall measure for a trace.) A locality frame
of length 20 is assumed in this table. The anomaly measure used is the
number of sliding window frames (out of the last 20 frames) with anomalous
values. N is the width of the sliding window used.

 N = 1 N = 2 N = 3 N = 6

Trace Length Min Max Min Max Min Max Min Max

42.43 1445 0 0 0 0 0 0 0 0

55.37 3017 0 0 0 1 0 2 0 8

51.24 2718 0 2 0 8 0 15 0 20

ORA
rogue

155 0 0 12 20 17 20 20 20

BBN
rogue

27 0 0 20 20 20 20 20 20

Table 2. Summary of PersonnelTracker experimental results.

The first three traces in the table (named after the final few digits of their
timestamps) correspond to normal use of clients. The first trace (42.43),
which is entirely normal, was typical of almost all traces during normal
usage. In fact, it was hard to find normal traces containing abnormalities,
such as trace 51.24 and trace 55.37. Anomaly graphs for traces 55.37 and
51.24 are shown in Figure 5, Figure 6, and Figure 7.

18

Figure 5. Anomaly graph for 55.37, N = 2.

Figure 6. Anomaly graph for 51.24, N = 2.

Trace 51.24 deserves special mention. This trace showed the greatest
deviation from the training data of our “normal” traces. It was the only
normal trace to achieve the maximum anomaly value. The maximum
anomaly value of 2 for N = 1 implies that two of its requests do not appear

19

anywhere in the training data. Careful examination of the trace shows that
it contains two instances of the request “setPrivacy.” Evidently, none of the
users set access rights for their data in the traces that were selected as
training data! For any N greater than two, this trace is apt to generate a
false alarm (see Figure 7).

Figure 7. Anomaly graph for 51.24, N = 3.

The last two traces are from rogue clients. Most of our experimentation with
rogue clients used interactive clients. We wrote one rogue client program,
which appears in Table 2. Summary of PersonnelTracker experimental
results.. Mike Dean of BBN kindly supplied us with another rogue client,
which he prepared using the Interface Description Language (IDL)
specification of the PersonnelTracker; this rogue is called the BBN rogue in
the table. Both rogue clients are unequivocally anomalous.

Table 2 shows the effect on anomaly values of varying N. Note that N = 1
corresponds to checking that all requests made by the client appear in the
training data. As expected, anomaly values rise monotonically with
increasing N. What is more surprising is that a sliding window width of 2 is
sufficient, for this example, to distinguish between normal and rogue traces.

3.3.2 The LPA Vision experiment.
The LPA Vision experiment was much smaller than the PersonnelTracker
experiment. The training data comprised only a few traces, and only two

20

attacks were simulated. The coverage graphs are shown for values of N
equal to 1, 2, and 3, in Figure 8, Figure 9, and Figure 10, respectively. The
N = 1 graph shows good coverage, however, that small a value of N yields a
high number of false negatives. As N increases to 2 and 3, the coverage
drops off, as the number of strings in the self detector continues to grow.
For higher values of N, the number of strings in the detector continues to
increase and the overall coverage decreases.

Figure 8. Coverage graph for N = 1.

21

Figure 9. Coverage graph for N = 2.

Figure 10. Coverage graph for N = 3.

The results from the two attacks are summarized in Table 3. The rogue
client attack was 100 percent anomalous—in other words, easily detected by

22

our method.3 The attack that simulated using a standard client with a
stolen password was only 1 percent anomalous. We were not able to test the
self database against additional normal traces, hence we have no
information about false positives. All traces were used to generate the self
database, which includes only a little over 1,000 strings. We do not believe
that the training data is even close to covering normal use. In Table 3,
Scenario 1 is the attack that attempts to use the standard application front
end for unusual actions.

 N = 1 N = 2 N = 4 N = 6
Attack Trace

length
Min Max Min Max Min Max Min Max

Quick
Approve

178 0 0 0 0 0 2 0 3

Rogue 17 0 2 5 5 5 5 5 5

Table 3. Results of the LPA Vision experiment.

3.3.3 Detection efficiency and false-positive rate
The experimental results described so far show that the CORBA Immune
System has a high detection efficiency (that is, that it does not miss attacks).
To estimate its false positive rate, we tested 43 normal traces that were not
used as training data. The results are shown in Figure 11. The spike in that
figure corresponds to the spike of Figure 7, and is explained by the fact that
the training data does not contain operations related to privacy.

3 Unfortunately, this appealing result is invalidated by the fact that our training
data did not nearly cover normal usage.

23

Figure 11. Anomaly graph for normal traces.

While much more data would be required to compute a definitive false-
positive rate, the results we have obtained strongly suggest that it is possible
to obtain a very low false-positive rate using this method.

3.4 Discussion
The results that we obtained are still preliminary. We were able to test our
candidate definition of self on only two applications, one of which was
developed in-house, and the other of which was too large for us to obtain
coverage. While these are representative of a broad class of applications, we
need to gain more experience with a variety of distributed applications.

Previous work on Unix benefits from the existence of well-known attacks
from actual system use. CORBA applications are too new for any library of
known attacks to be available—certainly not attacks on the applications
themselves. Therefore we had to content ourselves with simulated (although
realistic) attacks.

An ideal experiment would test the detection algorithm against data from a
real site, either relying on chance to provide some intrusions or injecting
some test intrusions into the site. The alarms raised by the detection
algorithm could then be compared with “ground truth” to measure detection
efficiency and false alarm rates. Unfortunately, most companies and
organizations are not willing to become experimental subjects for security

24

experiments because they perceive very little advantage and considerable
risk.

Intuitively, one might expect that window size for sequences of CORBA
requests should be shorter than for, say, Unix kernel calls, because of the
difference in granularity. We found that window size makes little difference
in catching rogue clients, but it certainly affects the cost of obtaining
coverage. In general, the window size should be the smallest possible that is
able to distinguish between normal activities and attacks. To make an
intrusion detection system practical, we must find a way to automatically
ascertain the minimum window size that distinguishes between normal
usage and attacks.

4 Research at the University of New Mexico
Over the past year, the UNM group focused on three activities: Collecting
new data sets, studying alternative data analysis methods for the system-call
data (based on these new data sets), and developing a real-time monitoring
tool for Linux. Most of this work was funded under another DARPA grant.
However, it was informed by our ongoing collaboration with ORA, and we
charged the ORA grant for the time we spent communicating the results and
discussing the project. The next two subsections describe our progress and
give an overview of the results.

4.1 Data Modeling
In this project, we had the goal of answering the following questions: What
properties of the system-call data make it appropriate for the sliding window
method that we have used so successfully? Are there other ways of modeling
the data that would lead to better or more efficient discrimination between
normal and abnormal patterns? If we had answers to these questions, then
we would have a much better idea of what to expect when we try these
techniques in other domains, such as CORBA, NT, or at the ATM level. To
answer these questions, we looked at several frequency-based techniques,
including Hidden-Markov Models, Markov trees, n-grams, and non-
parametric methods such as those used in SRI's Emerald project.

There are two important characteristics of the approach introduced in [5].
First, it identifies a simple observable (short sequences of system calls) that
distinguishes between normal and intrusive behavior. This observable is
much simpler than earlier proposals, especially those based on standard
audit packages, such as SunOS’s BSM. Second, the method used to
analyze, or model, the sequences is also much simpler than other proposals.
It records only the presence or absence of sequences; it does not compute

25

frequencies or distributions, or identify which sequences are most important.
The advantage of such a simple approach is computational efficiency, but
the question naturally arises of whether more accurate models of the data
might be possible.

Over the past several years, many statistically based learning techniques
have been developed. Several such methods have the potential for
generating more accurate and/or more compact models of the system-call
data, and at least two groups have published results of their own
experiments on alternative models applied to system calls. Most of the
available methods, however, were designed for specific applications, and
each has its own idiosyncrasies. Our goal was to compare these various
methods as systematically as possible across a larger and more realistic
suite of data sets than has been used in the past. This was not an easy
task.

We selected four methods for careful study: sequence time-delay embedding
(stide) which is the UNM-developed sliding window technique, a frequency-
based modification of stide, which we call "tstide," a rule-induction method
developed at ATT and adapted by Lee and Stolfo for the system-call data
(called RIPPER), and Hidden Markov Models (HMM).

A machine-learning approach to the system-call data would construct a
finite state machine to recognize the ``language'' of the program traces.
There are many techniques for building either deterministic or probabilistic
automata for this sort of task. These methods generally determine the
frequencies with which individual symbols (system calls in our case) occur,
conditioned on some number of previous symbols. Individual states in the
automaton represent the recent history of observed symbols, while
transitions out of the states indicate both which symbols are likely to be
produced next and what the resulting state of the automaton will be. Many,
but not all, of the algorithms for building these automata are based on the
assumption that the data are stationary. A particularly powerful finite state
machine is the hidden Markov model, used widely in speech recognition and
in DNA sequence modeling. HMMs are computationally expensive, but very
powerful. There is a great deal of information available on them, and their
usefulness has been demonstrated in many areas. For these reasons, we
decided to use HMMs as the finite state machine representative for our
experiments.

The original studies of the system-call approach were conducted primarily on
synthetic data sets. Synthetic traces are collected in production
environments by running a prepared script; the program options are chosen
solely to exercise the program, and not to meet any real user’s requests.
Although the earlier studies on synthetic data sets were suggestive, they are

26

not necessarily good predictors of how the methods will perform in fielded
systems. Consequently, we used a wider variety of data sets for our current
study. These include “live” normal data (traces of programs collected during
normal usage of a production computer system), different kinds of programs
(e.g., programs that run as daemons and those that do not), programs that
vary widely in their size and complexity, and different kinds of intrusions
(buffer overflows, symbolic link attacks, Trojan programs, and denial-of-
service). We used programs that run with privilege (with one exception),
because misuse of these programs has the greatest potential for harm to the
system. All of these data sets are publicly available and carefully described
at http://www.cs.unm.edu/~immsec/data-sets.htm. Intrusions were taken
from public advisories posted on the Internet. We tested each of the four
data-modeling methods on each of the data sets (traces of Unix programs) at
several different sensitivity thresholds. False positives were computed for
normal data not used during training, and true positives were computed for
traces of anomalous behavior.

We compared four methods for characterizing normal behavior and detecting
intrusions based on system calls in privileged processes. Each method was
tested on the same suite of data sets, consisting of different types of
programs and different intrusion techniques. On this test suite, three of the
four methods performed adequately. Hidden Markov models, generally
recognized as one of the most powerful data-modeling methods in existence,
gave the best accuracy on average, although at high computational costs.
Surprisingly, the much simpler sequence time-delay embedding method
compared favorably with HMMs. We conclude that for this problem, the
system-call data are regular enough for even simple modeling methods to
work well. The average results indicate that it might be possible to achieve
increased accuracy with HMMs, provided significant computational
resources are available to train and run them.

However, no one method consistently gave the best results on all programs,
and results between programs varied more than results between methods.
Variations in false positives were due more to the complexity of the traced
programs and their environments than to differences in the analysis
methods. Although there are multitudes of alternative methods that were
not tested, our results demonstrate that for this problem, several methods
perform well. We believe that the choice of data stream (short sequences of
system calls) is a more important decision than the particular method of
analysis.

Historically, many computationally sophisticated methods have been applied
to the intrusion-detection problem, yet there are few well-accepted solutions
in widespread use. One lesson from this study is that perhaps a
disproportionate amount of attention has been directed to the data-modeling

27

problem, and that equal attention should be paid to considering what are the
most effective data streams to monitor.

4.2 Real-Time Monitoring and Response
We developed a real-time monitoring system for collecting system-call data
under Debian Linux 2.1. The current system performs basic online
monitoring using the “look-ahead pair” method of analysis. This method was
described in [5] and differs slightly from the complete sequence analysis that
we have used for our offline studies. Although complete sequence analysis
seems to give more precise discrimination, the look-ahead pairs method is
much more efficient to implement in the kernel. Although our new kernel
cannot yet load and save profiles reliably (needed for the next step of our
research), we have used it over the past six months to collect several new
data sets for offline analysis.

Preliminary measurements on the monitor show no perceptible impact on
the performance of the computer on which it runs. This is a big result
because it suggests that it is practical to do both the system-call monitoring
and the analysis in real time. We have had to take a few short cuts to get
everything running, so the system is not yet ready for widespread
distribution.

We are developing an online monitor as the first step in implementing a
version of our IDS that runs in real time. Once that hurdle is crossed, our
next effort will be directed toward adapting the code for automated response.
We spent much of the past six months considering the automated response
problem, and we feel that thinking about automated response from the
system-call perspective is a good starting point. Automated response is a
controversial topic because of two factors: (1) False positives seem to be an
inescapable fact of life, and (2) It seems imprudent to allow a computer to
automatically take drastic measures when there is even a small probability
that it is a false alarm. We believe that the flaw in this analysis is with the
term “drastic measures.” We believe that a system capable of making
automated responses should be taking actions that are of a small grain size,
so that a few false actions are not lethal to the system. For this reason, we
believe focusing on the execution of system calls is a good place to begin
studying the automated response problem.

In conclusion, we believe that over the past several years, the field has made
enormous progress in its ability to automatically detect the presence of
intrusive and abnormal behavior. We believe that it is unrealistic to expect
perfect discrimination (100% true positives and 0% false positives), and that
the numbers currently being reported compare favorably with discrimination
problems in other fields. Thus, we believe that the most important next step

28

in IDS research is to develop automated response methods that can perform
well, given current detection abilities.

4.3 Papers Published
[3] D. Dasgupta and S. Forrest, “Artificial Immune Systems in Industrial
Applications,” accepted for presentation at the International conference on
Intelligent Processing and Manufacturing Material (IPMM), Honolulu, HI (July
10-14, 1999).

[7] S. Hofmeyr and S. Forrest “Immunity by Design: An Artificial Immune
System.” 1999 Genetic and Evolutionary Computation Conference (GECCO)
(in press).

[16] C. Warrender, S. Forrest, and B. Pearlmutter, “Detecting intrusions
using system calls: Alternative data models,” 1999 IEEE Symposium on
Security and Privacy (1999).

[8] S. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion detection using
sequences of system calls,” Journal of Computer Security, Vol. 6, pp. 151-
180 (1998).

5 Software Design and Development
We designed and built a prototype CORBA Immune System to analyze
interobject message traffic in a CORBA application and flag anomalous
activity in near real time. The prototype implementation uses the sliding
window definition of self described in Section 3.1, but the design is
applicable to a wide range of definitions of self, including different methods
of selecting events, different projections, and different comparison
algorithms.

We also constructed a tool, called Immune Data Analyzer (IDA), to aid in
analyzing experimental data and to generate descriptions of normal
application behavior.

The design of the two tools is described in [11]. (Although some details have
changed, the overall design has not.) Here we describe some highlights of
the design. Section 5.1 describes the CORBA Immune System architecture.
Section 5.2 describes the IDA architecture.

5.1 The Design of the CORBA Immune System
In this section, we describe the operation and design of the CORBA Immune
System. Details can be found in [11]. Further information on how to use
the system can be found in [1].

29

5.1.1 What the system does
The CORBA Immune System has four modes:

• Inoperative In inoperative mode, the CORBA Immune System does
nothing. The application can run as if the CORBA Immune System
were not installed.

• Training In training mode, the CORBA Immune System collects data
about the message traffic between clients and servers. The data can
later be used to generate a description of normal behavior.

• Test In test mode, the CORBA Immune System displays information
about every client/server connection. (Note that in the original
architecture report, test mode was called experimentation mode.)

• Detection In detection mode, the CORBA Immune System displays
warnings about anomalous client/server connections.

The Installation Guide [1] describes how to use the CORBA Immune System.
Briefly,

• The application developer decides which servers to instrument. He
links the CORBA Immune System’s Reconnaissance/Analysis module
with those servers.

• The application installer runs the CORBA Immune System in training
mode to collect data about normal usage of the application.

• The application installer runs the IDA tool to generate a self detector.
• The application installer runs the CORBA Immune System in detection

mode, telling it where to find the self detector. The CORBA Immune
System displays information about anomalous connections, which may
indicate that an attack is occurring.

5.1.2 Overview of how the system works
The Common Object Request Broker Architecture (CORBA) [2, 12],
promulgated by the Object Management Group (OMG), provides standards
for linking applications and objects across machine boundaries in a
heterogeneous, networked environment. In the CORBA environment, we can
speak of three layers: the underlying operating system(s), the Object Request
Broker, and the application. A CORBA application is written in terms of
communicating objects. The ORB architecture defines how requests are sent
from clients to servers and how replies are returned.

As described in Section 3.1, the CORBA Immune System analyzes message
traffic between CORBA application clients and servers, using the sliding
window definition of self. We call the combination of client and server a
connection; different clients interact with a server via different connections.

The CORBA Immune System collects a sequence of requests, called a trace,
for each connection from a client to a server. It then compares the trace to

30

the self-value (viz., the set of sequences of length N) for that type of server,
using the sliding window algorithm. (The self-value has been computed from
training data.) We expect that even when no attack is being made on the
application, some deviation from normal may occur, typically because the
training data does not cover all normal activity. To avoid false alarms, we
report a possible attack only if the deviation from normal exceeds a certain
(configurable) threshold.

The prototype implementation of the CORBA Immune System works with
Iona’s Orbix, a widely used ORB implementation. However, the concepts
underlying the CORBA Immune System are independent of the operating
system and the ORB.

5.1.3 Implementation overview
The CORBA Immune System is implemented as three modules:

• Reconnaissance/Analysis module
• Threshold Monitor
• Configurator

Figure 12 illustrates the parts of the CORBA Immune System (CORBA
Immune System components are shown in gray; application components are
white.)

Figure 12. Overview of the CORBA Immune System.

The Reconnaissance/Analysis Module is interposed between the client and
the object server. Every incoming request on a connection causes the

Appl. Server

Reconnaissance
/Analysis

 Client

Threshold CDIF
Monitor
interface

Configurator

To CIDF

31

Reconnaissance/Analysis Module to be invoked. In training mode, the
Reconnaissance/Analysis Module collects data about normal message traffic
on connections. We call this information training data.

In detection mode, the Reconnaissance/Analysis Module plays a central role.
It analyzes each request in the context of previous requests; the result is an
anomaly measure for the current sequence of requests on this connection.
Periodically, the Reconnaissance/Analysis Module reports to the Threshold
Monitor an overall anomaly measure for each connection.

In the prototype implementation of the CORBA Immune System on Orbix,
the Reconnaissance/Analysis Module is implemented as a filter on the
server.4 Orbix enables the application authors to define filters that can
observe requests on the message path from client to server. The filter is
awakened each time a request arrives at the server. The application
developer controls which servers the system should monitor. To enable the
filter, the application developer declares and initializes a C++ filter object
(using the C++ filter class that is part of the CORBA Immune System) in the
server source code. Adding a filter to a server requires adding two lines of
code to the server, recompiling the server, and relinking.

The Reconnaissance/Analysis Module includes two important submodules:
• The self detector is a finite state machine that implements the notion of

normal behavior for the server connection. Specifically, the IDA tool
(see Section 5.2) constructs a table describing the finite state machine
based on the training data. The CORBA Immune System reads that
description during execution.

• The anomaly meter, which aggregates the output of the self detector to
create an overall measure of how anomalous the connection is.

The second major component of the CORBA Immune System is the
Threshold Monitor, which has two tasks:

• It receives and examines the anomaly measures of connections and
alerts the operator if a certain threshold is exceeded.

• It optionally reports anomalies to a larger intrusion detection
framework such as CIDF (see [14] for a report and the draft standard)
or a network management system. Currently, it generates an alert
using Boeing’s IDIP format, which Boeing’s software then translates
into a CIDF message.

4 Filters are a feature of Orbix not currently supported by the CORBA standard.
However, a similar feature, called interceptors, appears in the CORBA Security
Specification Version 1.2 [13]. The OMG may add interceptors to the general
CORBA standard in the future.

32

The third major component of the CORBA Immune System is the
Configurator, which is concerned with operational issues, such as how the
intrusion detection system is started, controlled, and shut down. The
operator communicates with the CORBA Immune System via the
Configurator.

The Threshold Monitor and the Configurator are implemented as CORBA
objects, and communication between them and the
Reconnaissance/Analysis Module occurs by means of CORBA messages.
The CORBA Immune System does not include special mechanisms for
security or encryption; we expect it to exploit the security features of the
underlying ORB.

5.1.4 Finite-state machine implementation of the self database
In [5], Forrest defines the self of Unix processes in terms of a sliding window
(of constant width N) over the sequence of system calls. Self is the set of
strings of length N that appear in “normal” traces. In this section, we show
how to derive a deterministic finite state machine (FSM) implementation of
the sliding window algorithm. Previously, such an implementation was
thought to be impractical, because it could lead to a state explosion (see [6]).

One potential cause of a state explosion is that a practical implementation
must consider what state to go to in the case of an unexpected input (that is,
an anomalous input). We solved that problem by introducing special “none-
of-the-above” transitions in the FSM construction presented here. As can be
seen from the construction, the number of states is equivalent to the number
of items in an efficient representation of the sliding window self database.

We first briefly review the sliding window algorithm. Recall that in the
sliding window algorithm, we slide a window of constant width across a
string of input data over a constant alphabet. Consider a string of training
data:

A B C C B B C C B B C C D

Then the self database consists of the set of all substrings of, say, length 4 of
the training string:

ABCC

BCCB

CCBB

CBBC

BBCC

BCCD

33

We can represent the self database as a tree of depth N. Each node at depth
k represents the first k letters of a substring. Figure 13 shows part of the
tree for the example training string (the branch representing BBCC is
omitted, to simplify the figure). Thus, the nodes of the tree represent all
legal substrings of the training string.

Each transition may be labeled with the letter that leads to the child
substring.

Figure 13. A partial tree for the example string.

Given such a tree representation of the self database, a straightforward
implementation of detection using the sliding window algorithm requires
descending the tree from the root to depth N for each new window value.
Suppose, for example, that the current window contents are BCCB. The
detector would descend the tree, passing from the root node through B, BC,
and BCC, to BCCB.

An alternative implementation maintains N pointers into the tree. In this
implementation, if the current window content is BCCB, there are pointers to
BCCB, CCB, CB, and B. When a new input symbol is read, each pointer is
updated. For example, if the next letter is B, the pointer to BCCB is replaced
with a pointer to B, and the next three are updated to CCBB, CBB, and BB.
Both of these implementations require N operations for each input symbol.

It occurred to us that handling a single symbol of input could be done using
fewer operations, which led to the FSM implementation. Our construction
implements what we call the “two-finger” algorithm, which can best be
explained as follows.

A B C

AB BC

BCC CBB

CB CC

CCB

ABC

ABCC BCCB CBBC CCBB BCCD

34

Imagine that while reading the string, you enclose a substring of letters with
your two index fingers. As you read the string, you move your fingers so
they always contain the current contents of the sliding window. Suppose
you are reading the test string “ABCCBCCB.” You begin with both fingers
together at the beginning of the string. This (initial) state corresponds to the
root node of the tree, or the empty string. Moving your right finger one letter
to the right corresponds to descending one level in the tree of Figure 13. In
this case, with successive moves of your right finger, you successively visit
states A, AB, ABC, and ABCC. However, we require that your fingers be
separated by at most N letters. In order to move past the Nth letter, you
must move your left finger one letter to the right. This results in the state
representing the suffix of the current state’s substring. For example, from
state ABCC you move your left finger and arrive at state BCC. (Note that
this state is guaranteed to be in the tree.) You may now move your right
finger again, which brings you to state BCCB.

The left finger moves correspond to a set of suffix transitions that we can
impose on the tree. That is, we define a transition from each state to the
state corresponding to its suffix. For example, the suffix of A is the empty
string state; the suffix of state AB is state A. It is easy to see how, using left
and right finger moves, we can traverse any string that contains no
anomalies.

However, the sixth letter in the test string introduces an anomaly. After
substrings BCCB, there are two anomalous substrings—CCBC and CBCC—
that do not appear in the training data. From state BCCB, a left finger move
brings us to state CCB, but there is no transition for a next letter C from
that state (because CCBC isn’t in the self database). If, however, you move
your left finger a second time,5 you get to state CB. There is also no
transition for C from state CB. Moving the left finger a third time, we arrive
at state B, which has a transition to BC. The rule, then, is to move the left
finger only until you can move the right finger again (i.e., until you reach a
state in which a transition for C occurs).

In this example, we have been forced to take three suffix transitions, which
corresponds to two anomalous substrings in the test data (CCBC and
CBCC). In general, the number of anomalies for each right finger move is
the number of left finger moves minus one (because one left finger move is
always required). Now we can traverse any test string, including anomalous

5 We can also call the suffix transition the “none-of-the-above” transition. It is the
default transition, which we take when none of the right-finger transitions is
possible. Note that suffix transitions do not consume their input. However, the
FSM that we have defined is deterministic.

35

ones, and we can count the number of anomalies that occur during the
traversals.

Suppose that a new letter appears in a test string, one that does not occur in
the training data. To accommodate that possibility, we add one more state,
the UNKNOWN_SYMBOL state, as a child of the root. This completes the
construction of the FSM for the two-finger version of the sliding window
algorithm.

We have implemented the two-finger algorithm in the Immune Data
Analyzer. By adding the suffix transition for each node at the time the node
is created, we construct the self database directly as a finite state machine.

The self database may be very large, including tens, hundreds, or even
thousands of strings of length N. Nevertheless, the finite state machine
executes just two transitions for each input symbol, plus one transition for
each anomalous input string, so the computational burden associated with
each input symbol is low.

5.2 The Design of the IDA
The IDA is a tool for building self detectors from training data describing the
normal operation of a CORBA application, as shown in Figure 14. After the
self detector is generated, it is used as a custom component as part of the
reconnaissance/analysis module, as shown in Figure 15. The self detector
evaluates incoming messages from the CORBA client and reports anomalies
to the anomaly meter.

The ImmuneDataAnalyzer Generates a Self Detector from
Training Data

Training
data

Immune Data
Analyzer

Self
detector

Figure 14. Self-detector generated by the IDA.

36

Customizing the R/A Module

Self
detector

Message
from
CORBA
client Anomaly

meter

Reconnaissance/Analysis Module

To CORBA server
Figure 15. Self-detector and the R/A Module.

37

Figure 16. User interface of the IDA.

Figure 16 illustrates the IDA, which is constructed as a sequence of four tab
panels:

• Input Training Data. In the first tab panel, the user inputs the
training data from a file.

• Generate Self Detector. In the second tab panel, the user can
generate a self detector. Currently only the sliding window definition of
self is supported, but the user can choose the length of the window.
The tool provides a graph estimating how well the training data covers
normal usage (see Section 3.1 for a brief discussion of coverage).

• Save Self Detector. In the third tab panel, the user can generate a
description of the self detector as a finite state machine.

• Test Self Detector. The user can test the generated self detector
against new traces. The IDA produces anomaly measures for each new
trace. Several different algorithms are available to determine the
anomaly measures.

The user interface is presented in detail in the Installation Guide [1].

38

6 CIDF Promotion to the Government and Commercial
Sectors

Over the last two years, ORA has contributed to the standardization of a
common framework for intrusion detection known as CIDF. ORA has
contributed in the areas of architecture definition and the establishment of a
connection between CIDF and the SNMP network management standards
defined by the Internet Engineering Task Force (IETF). An additional
contribution has been in the formulation of data content requirements for
intrusion detection alert messages. In this report, however, we focus on the
work done to promote CIDF to government agencies and commercial
vendors.

The CIDF standard was initially defined principally by the DARPA-sponsored
intrusion detection community. A year into the standardization effort, the
CIDF community decided to become one of the many Internet Engineering
Task Force (IETF) standards efforts. Without becoming part of a larger
standards group, there was concern that the effort to standardize intrusion
detection would not become a commercial reality. The goal of the ORA CIDF
promotion effort was to visit the commercial vendors and bring them into the
standardization effort. The specific goals of these trips were:

• educate the vendors about intrusion detection standards, using CIDF
as the draft standard,

• solicit their opinion on requirements for intrusion detection standards,
and

• get them involved in and committed to the standards effort.

These goals were met by visiting the vendors, promoting the standardization
effort, and signing them up for IETF participation. The cooperation of the
commercial groups was needed to ensure the success of this standard in
IETF. The Intrusion Detection Exchange Format working group (IDwg) was
launched in December 1998, and is an active part of the IETF with a charter
and clearly defined goals. The companies visited as part of this promotion
project were Axent, Centrax, Network Associates, CISCO, and ISS are now all
active members of the IDwg.

6.1 Summary of Vendor Visits and Accomplishments
Table 4 presents a list of the companies visited and the location and name of
the intrusion detection commercial product of each one.

39

Company name Location Product(s)
Axent Technologies Rockville, MD NetRecon, Intruder

Alert

Centrax San Diego, CA ENTrax

HP Cupertino, CA HP Openview Node
Sentry

Network Associates Santa Clara, CA CyberCop Network,
CyberCop Server,
CyberCop Scanner

Newbridge Networks,
Inc.

Herndon, VA High Speed ATM

SAIC San Diego, CA CMDS

Table 4. Company and commercial product matrix.

6.1.1 HP (October 5, 1998)
Maureen Stillman of ORA presented an overview of CIDF and discussed
requirements for intrusion detection standards with the Openview Security
Management Products group at HP in Cupertino, CA.

This group is working on the development of a product called HP Openview
Node Sentry, which will be commercially available in 1999. The product will
provide a graphical user interface to a number of intrusion detection and
network management systems and offers an integrated solution for
enterprise security management. HP views intrusion detection standards as
critical technology for this product because they want as many commercial
vendors as possible to “plug in” to their management console. HP has
announced a strategic alliance with CISCO and is working to form other
alliances. Thus, HP has good business reasons for adopting intrusion
detection standards. Our technical discussions reflected this strategic plan.
They agreed to take an active role in the IETF and present their requirements
for an ID standard at the IETF kickoff meeting.

6.1.2 Centrax (August 5, 1998)
Centrax was the first to sign up and commit to working on intrusion
detection standards. They presented their requirements for ID standards at
the IETF kickoff meeting. They have been active participants in the
standardization process.

40

6.1.3 Network Associates (October 5, 1998)
We presented an overview of CIDF and discussed requirements for intrusion
detection standards at Network Associates in Santa Clara, CA. The product
developed by this group, Net Tools, is a toolbox combination that includes
PGP, Gauntlet Firewall, and McAfee Total Virus Defense. They requested a
discussion with Stuart Staniford-Chen (IDwg co-chair) to voice their
concerns and ascertain the technical direction of the group. Ultimately, they
attended the IETF kickoff meeting and presented their requirements for
intrusion detection.

6.1.4 Newbridge (November 17, 1998)
On November 17, we visited Newbridge and made the same presentation.
Newbridge responded that they would attend the kickoff meeting if they
didn’t have a conflict with other IETF meetings. They are heavily involved in
the IETF and work extensively on ATM standards. Their business supports
and relies on standards efforts.

6.1.5 Axent Technologies (November 16, 1998)
On November 16, we visited Axent Technologies and Newbridge to educate
them in intrusion detection standards and ask them to join us in the
standardization effort. Axent was originally skeptical, but ultimately agreed
to join the standardization effort and present at the IETF kickoff meeting.

6.1.6 CISCO (August, 1998)
We signed up Kevin Ziese of CISCO’s Austin-based security group to present
their requirements at the IETF kickoff meeting. This group works on the
former Wheelgroup (purchased by CISCO) commercial line of IDS products).
With CISCO on board, we were more easily able to persuade many other
companies to join the standard’s effort. CISCO also attended the CIDF
meeting in Seattle on October 20-21.

6.1.7 ISS
Stuart Staniford-Chen signed up ISS to present their requirements at the
IDdwg in Orlando. ISS is committed to intrusion detection standards. Mark
Wood of ISS is the editor of the intrusion detection requirements document.

6.1.8 SAIC
After several months of discussions with DISA, the government contract
group at SAIC committed to attend CIDF meetings as well as attend the IETF
kickoff meeting. Robert Thuleen is the point of contact for SAIC and Lynn
Henderson claimed that DISA would fund their participation. Although SAIC

41

claimed that they would participate, they never came to any meetings. The
group working on the CMDS toolkit was later sold to another entity.

Refer to Table 5 for a summary of vendor requirements for IDS standards.

Company Signatures of
attack

Configuration
management

Console accepts
alerts from any
IDS

Axent
Technologies

 ✓ ✓

Centrax ✓

HP ✓ ✓

Network
Associates

✓ ✓

SAIC ✓

Table 5. Requirements for intrusion detection standards.

With respect to the openness of the IDS and data format, and security
supported by the IDS software, in general, we found that the vendors are
building closed proprietary systems with minimal built-in security
mechanisms. Table 6 presents a summary of the results.

6.2 Vendor Questionnaire
Each vendor was presented with a questionnaire concerning the openness of
their intrusion detection technology and their attitude on standards. The
vendors were told that the answers could not be proprietary, as this would
be published as a DARPA report. The appendix contains the answers to
these questions from each vendor. These questions were compiled in
collaboration with Todd Heberlein of NetSquared.

42

Company Proprietary
data format

Patents,
licensed
technology

Security
services

Support for
SNMP

Axent
Technologies

Data transfer
in encrypted
ASCII format

Yes We use our own Yes

Centrax Yes Yes DES Forward
alerts
through
SNMP

HP N/A N/A N/A Yes

Network
Associates

Yes Yes PGP, MS-CAPI
and proprietary
services

For alerts,
generate
SNMP traps

SAIC Yes Yes DES Alert
message to
SNMP trap

Table 6. Openness of product and security services.

6.3 Lessons Learned
What did it really take to sign up these vendors? Here are some lessons
learned for the benefit of those interested in going down a similar path.

The Commercialization Subgroup. We had great support during this. A
CIDF commercialization subgroup was formed, comprised of Paul Proctor
from Centrax, Brian Witten of (at that time) AFRL-Hanscom Site, and Dave
Donahoo from CSC at the Air Force Information Warfare Center. The group
formulated ideas on how to motivate commercial vendors and was especially
strong in the area of making the business case to enable vendors to commit.
CIDF would not have been successful without this group.

Business justification for standards. The commercial vendors all stressed
the need for a business justification to persuade their higher management to
commit. The CIDF commercialization group helped to address this issue.
Ultimately, however, each vendor had to make the case for themselves with
their higher management.

43

Choice of representative. It was important to send a representative that
the vendors did not consider a competitor or a threat. This was critical to
getting them to say where they stood on the idea of a standard.

Getting the right people to the meeting. To get the necessary
commitments from the vendors, the right people need to be at the meetings –
the best technical people, as well as marketing representatives and
important decision-makers.
Stating the business case. The ORA representative prepared for each visit
by reviewing each vendor’s Web site and reading relevant papers to
understand the company, their product, and their competition. The vendors
were informed that ORA was visiting all of their competitors, which really
shook them up, causing them to take the standard’s initiative seriously.

Get the vendor’s technical interest. The technical talk on CIDF was about
an hour long and stimulated interesting technical exchanges. The vendors
had clearly not given much thought to the idea of a standard (with the
exception of HP), so presenting CIDF as a work in progress sparked a lively
debate. This provided intellectual motivation for the technical staff.

A presentation on CIDF entitled “Common Intrusion Detection Framework
Overview” was prepared and a bound book containing the following
information was handed out to the participants:

Overview of CIDF presentation
Copy of the draft IETF charter
Copy of a published paper on CIDF
Copy of the questionnaire

7 Conclusion
For the past two years, we have conducted research on applying
computational immunology to distributed object systems. We created a
definition of “self” for such systems, conducted experiments to validate that
definition, and built a prototype intrusion detection system for applications
build on representative CORBA middleware.

Trusted applications and the rogue client attack. We have defined and
advertised the problem of the rogue client in applications and shown that
computational immunology can detect such attacks with high efficiency and
an extremely low false alarm rate. The problem of rogue clients needs to be
addressed not only in an intrusion detection system, but also by access
control mechanisms at the middleware and OS levels.

44

We have articulated the four components of a definition of self in any area
and created a general tool for analyzing self data and building a self
database. Our colleagues at the University of New Mexico have
demonstrated of these four, the most important are focusing attention on a
suitable computational entity and identifying a representative data stream
that characterizes that entity. Unless a characteristic data stream has been
identified, sophisticated detection mechanisms are pointless; once it has
been identified, rather simple and inexpensive mechanisms will suffice.
Much of the work of other groups has focused on mechanism. By contrast,
ORA applied the UNM mechanism to a new problem, the rogue client attack.
We designed and built a prototype CORBA Immune System to test our ideas.
The CORBA Immune System successfully demonstrated its ability to detect
rogue clients with high efficiency and a very low false positive rate.

We developed a particularly efficient implementation of Forrest’s sliding
window algorithm. The implementation uses finite state machines for
computational efficiency. We are able to incrementally construct the self
database as a finite state machine during training; the completed FSM can
then be used for detection.

The Unix (Linux) name daemon exploit. As part of the work of this
contract, our colleagues at the University of New Mexico successfully
detected the named attack, thus providing striking and persuasive evidence
that computational immunology catches novel attacks.

CIDF promotion. We also conducted a successful effort to interest
commercial intrusion detector vendors in standards for intrusion detection.
These vendors are now heavily involved in the current IETF IDwg standards
effort.

Suggestions for further research. Computational Immunology is much
more than exercising the sliding window algorithm on sequences of program
calls. While Forrest’s insight into a way of characterizing program behavior
is profound, there are many other areas in which to apply lessons from the
vertebrate immune system to computer systems. These include the areas of

• applying anomaly-based detection to new computational entities,
• organizing system- or network-wide resistance to attacks, and
• remembering the attack and being prepared for repeats (this is what we

call immunity).

One particular area of research that deserves greater attention is the
problem of obtaining coverage—of ensuring that enough training data has
been collected to provide a complete self database for a given application.
This problem is exacerbated by changes in “normal” behavior, either because
of new releases or because of gradual changes in user behavior over time.
As computational immunology is used in larger and more complex systems,

45

the problem of obtaining coverage will become acute. Work needs to be done
on automating this area.

8 References
1. Baker, J., F. Fung, and C. Marceau, CORBA Immune System

Installation Guide, Odyssey Research Associates Technical Report
1998.

2. Baker, S., CORBA Distributed Objects Using Orbix, 1997: ACM Press.

3. Dasgupta, D. and S. Forrest, "Artificial Immune Systems in Industrial
Applications," in Proceedings of the International conference on
Intelligent Processing and Manufacturing Material (IPMM), 1999,
Honolulu, HI.

4. Forrest, S., S.A. Hofmeyr, and A. Somajayi, "Computer Immunology,"
in Communications of the ACM 40:10 (1997), pp. 88-96.

5. Forrest, S., S.A. Hofmeyr, and A. Somajayi, "A Sense of Self for UNIX
Processes," in Proceedings of 1996 IEEE Symposium on Computer
Security and Privacy, 1996: IEEE Press.

6. Ghosh, A.K., A. Schwartzbard, and M. Schatz, "Learning Program
Behavior Profiles for Intrusion Detection," in Proceedings of 1st
USENIX Workshop on Intrusion Detection and Network Monitoring,
1999, Santa Clara, CA.

7. Hofmeyr, S. and S. Forrest, "Immunity by Design: An Artificial
Immune System," in Proceedings of Genetic and Evolutionary
Computation Conference (GECCO), 1999.

8. Hofmeyr, S., S. Forrest, and A. Somayaji, "Intrusion detection using
sequences of system calls," in Journal of Computer Security 6(1998),
pp. 151-180.

9. Iona Technologies, Orbix Programmer's Guide, 1997.

10. LPA Software, LPA Vision User Manual 1.0, 1997.

11. Marceau, C., et al., Architecture of a CORBA Immune System, Odyssey
Research Associates Technical Report TM-98-0005, 1998.

12. Object Management Group, The Common Object Request Broker:
Architecture and Specification (CORBA™), 1998: Object Management
Group.

13. Object Management Group, CORBA Services: Common Object Services
Specification, 1997.

46

14. Staniford-Chen, S., http://seclab.cs.ucdavis.edu/cidf/.

15. Stillerman, M., C. Marceau, and M. Stillman, "Intrusion Detection for
Distributed Applications," in Communications of the ACM 42:7 (1999).

16. Warrender, C., S. Forrest, and B. Pearlmutter, "Detecting Intrusions
Using System Calls: Alternative Data Models," in Proceedings of 1999
IEEE Symposium on Security and Privacy, 1999.

47

Appendix

Intrusion Detection standards interviews

The appendix presents the responses to a survey of intrusion detection
software vendors ascertaining their interest in participation in development
of standards for intrusion detection software. The companies surveyed were
Axent Technologies, Centrax, Hewlett Packard, Network Associates, and
SAIC Inc. The answers were elicited during face-to-face visits. The full text
of the responses is included.

Axent Technologies

0. What is the name, address, Web page address and CIDF meeting
attendees for this company?

Name: Axent Technologies

Address: 2400 Research Blvd., Suite 200

Rockville, MD 20850

Web address: http://www.axent.com

Meeting attendees: Mark Shinbrood, Senior VP, Business
Development

Meeting date: 8/5/98

1. What is the name of your product(s)?

Intruder Alert, Enterprise Security Manager, NetRecon

2. What is your framework and what platforms do you currently support?

48

The framework is proprietary. Our products support 55
platforms, including NT, NetWare, Solaris, AIX, HP/UX, etc.

3. What is the data format on the wire? Is it documented? Is it proprietary?

 Data transfers in encrypted ASCII format

4. What type of messages do you exchange (e.g., SNMP uses the GET, SET,
REPLY, and TRAP message types)?

 SNMP

5. What do you build on (directly on IP, on UDP, TCP, RPC, CORBA)?

 TCP, IPX

6. What do you use for security, such as secure communication?

We use our own

7. Do you provide an API to your communication infrastructure or to your
IDS?

 Yes

8. How do you configure your system?

We call our configuration “Drop and Detect” because we provide
out of the box over 100 pre formatted policies to detect
intrusions.

9. Do you see any benefit to interoperatibilty with network management
tools or standards?

Yes. Our products are currently the only products that are
seamlessly integrated with Tivoli, HP-OpenView, and BMC.

 Are you compliant with SNMP?

 Yes.

49

10. What are your requirements for an intrusion detection standard?

We expect a standard to be host based and scalable to the
enterprise which means that it must have a distributed
architecture with console management as a key piece of the
product definition.

11. Would you see an IDS standard as a benefit to your business?

 Yes, we believe it would be beneficial to our customers.

 If so, how?

 In fact, AXENT is one of the start-up participants involved in the
ICSA-sponsored Intrusion Detection Consortium. Our primary
mission is to centralize terminology and common practices into
some sort of unified understanding, so that the market may
better understand what "Intrusion Detection" means--from the
leading vendors' PoV. This give all of the vendors more
credibility, and accountability in needing to cut through the
marketing information, and helping the market really
understand the concept of "truth in advertising."

12. Do you have trademarks, patents, or licensing fees for your
communication framework?

 Yes.

Centrax
0. What is the name, address, Web address and CIDF meeting attendees for

this company?

Name: Centrax

Address: 6540 Lusk Boulevard, Suite C-212

 San Diego, CA 92121

Phone: (619)546-2400

50

Web address: http:\\www.centraxcorp.com

Attendees: Paul Proctor and Chris Byrne

Date: 8/6/98

1. What is the name of your product(s)?

Detection and Response Software (eNTrax) and Centrax Audit
Strategy Tool (CAST)

2. What is your framework and what platforms do you currently support?

Our plaform is NT for the central console. The agents can be
NT, Solaris and HP/UX AIX.

3. What is the data format on the wire? Is it documented? Is it proprietary?

The data format on the wire is proprietary and not documented
for customers.

4. What type of messages do you exchange (e.g., SNMP uses the GET, SET,
REPLY, and TRAP message types)?

We use SNMP for talking.

5. What do you build on (directly on IP, on UDP, TCP, RPC, CORBA)?

TCP/IP.

6. What do you use for security, such as secure communication? Do you
use your own cryptographic techniques to provide for secure
communication or do you assume another piece of equipment will provide
it? (e.g., at one point, WheelGroup was letting the BorderGuard routers

51

create a virtual private network (VPN), or "encrypted sleeve” as they used
to call it, provides much of the security).

Single DES.

7. Do you provide an API to your communication infrastructure or to your
IDS? From C, C++, Java, Perl?

Currently, we don’t provide any APIs. We have plans to provide
some APIs to open up information in the database. The
customers are asking for access to the information in the
database. We are working on giving them that access.

8. How do you configure your system?

Configuration is defined using a GUI to specify security policies.
There are audit policies and collection policies that can be set by
the tool. We believe that it would be very difficult to standardize
on configuration.

9. Do you see any benefit to interoperability with network management tools
or standards? Are you compliant with SNMP?

We forward alerts through SNMP. HP OpenView sends
messages to our system.

10.What are your requirements for an intrusion detection standard?

We would like to see standards for signatures of attacks. If we
had such a standard, then records could be processed and put
into a format for the product’s analysis engines. All products
would handle the analysis differently.

52

11.Would you see an IDS standard as a benefit to your business? If so,
how?

We believe that commercial standards benefit the bottom line.
They expand markets and open access to other resources. You
should be talking with user groups as well as the commercial
vendors.

12.Do you have trademarks, patents, or licensing fees for your
communication framework?

Yes, we have trademarks and patents but we wouldn’t suggest
any required technology for the standard that would allow us to
charge a fee or license technology.

13.Anything else that you would like to add?

Paul Proctor: We would like to know what DARPAs commitment
is to this standard’s effort. We are concerned about spending
Centrax’s valuable time and effort only to find that the standard
is dropped due to lack of follow through.

Paul Proctor has agreed to attend the next CIDF meeting on Aug. 23 in
Chicago. We welcome his participation.

Hewlett Packard
0. What is the name, address, Web page address and CIDF meeting

attendees for this company?

Name: Hewlett-Packard Company

Address: 19111 Pruneridge Avenue, MS 47U12

Cupertino, CA 95014

Web address: http://www.nai.com

Meeting attendees:

53

Polly Siegel, Ph.D., R&D Manager, OpenView Security
Management Products

 Mark Crosbie, Security & Intrusion Detection

Dipankar Gupta, Architect, OpenView Security
Management Products

 Rosemarie Shepley, Software Development Engineer

Meeting date: 10/5/98

1. What is the name of your product(s)?

HP_Openview Node Sentry

2. What is your framework and what platforms do you currently support?

The term “framework” has a very specific meaning in the
management software industry. HP OpenView uses a “building
block” approach rather than a “framework” approach. This
means that OpenView products are modular and can be
implemented standalone.

Our approach is a management platform through which we will
support the “plugging-in” of a variety of intrusion detection
systems. We have recently announced a strategic alliance with
CISCO. We support HP-UX, NT and Solaris platforms.

3. What is the data format on the wire? Is it documented? Is it proprietary?

CISCO proprietary.

4. What type of messages do you exchange (e.g., SNMP uses the GET, SET,
REPLY, and TRAP message types)?

54

Cisco-proprietary messages. Record formats are defined in the
Cisco NetRanger User’s Guide.

5. What do you build on (directly on IP, on UDP, TCP, RPC, CORBA)?

Cisco-proprietary, connection-base UDP protocol.

6. What do you use for security, such as secure communication? Do you
use your own cryptographic techniques to provide for secure
communication or do you assume another piece of equipment will provide
it? (e.g., at one point, WheelGroup was letting the BorderGuard routers
create a virtual private network (VPN), or "encrypted sleeve” as they used
to call it, provides much of the security).

We are exploring SNMP V.3 and SSL and IPSec. We need secure
communications.

7. Do you provide an API to your communication infrastructure or to your
IDS? From C, C++, Java, Perl?

N/A. Our requirement is to provide APIs to the management
functions.

8. How do you configure your system?

Management and configuration is our key selling point. The HP
Openview Security Management console will be used to manage
a wide variety of intrusion detection systems.

9. Do you see any benefit to interoperability with network management tools
or standards? Are you compliant with SNMP?

We do see benefits to this. We are compliant with SNMP.

55

10.What are your requirements for an intrusion detection standard?

Cisco is focusing exclusively on data exchange formats.

We need standards for configuration management and
installation. In addition, standards are necessary to distribute
signatures of attacks and deliver them securely. We need to
perform enterprise level deployment.

11.Would you see an IDS standard as a benefit to your business? If so,
how?

Yes, standards will allow us to become the management
platform of choice.

12.Do you have trademarks, patents, or licensing fees for your
communication framework?

Cisco does not have any trademarks, patents, or licensing fees
associated with its communication framework at this time.

13.Is there anything else that you want to add?

As a company, HP is committed to standards. We are interested
in becoming involved in this effort. Attending the IETF meeting
and presenting our requirements is something we want to do.
IDS standards are an important part of our vision for
HP_Openview Node Sentry.

56

Network Associates
0. What is the name, address, Web page address and CIDF meeting

attendees for this company?

Name: Network Associates, Inc.

Address: 3965 Freedom Circle

Santa Clara, CA 95054

Web address: http://www.nai.com

Meeting attendees: Michael Jones, Senior Product Manager

 Burnham H. Greeley, Development Manager

 Tom Clare, Senior Product Manager

 Aaron Bawcom, Software Engineer

 Rich Feiertag, Manager of Security
Architecture and Methodology

Meeting date: 10/5/98

1. What is the name of your product(s)?

CyberCop Network, CyberCop Server, CyberCop Scanner

2. What is your framework and what platforms do you currently support?

Scanning, IDS with console/sensor and server agents. Support
NT and Solaris platforms.

3. What is the data format on the wire? Is it documented? Is it proprietary?

Proprietary.

57

4. What type of messages do you exchange (e.g., SNMP uses the GET, SET,
REPLY, and TRAP message types)?

Proprietary messages. For alerts we can generate SNMP traps.

5. What do you build on (directly on IP, on UDP, TCP, RPC, CORBA)?

We build on UDP.

6. What do you use for security, such as secure communication? Do you
use your own cryptographic techniques to provide for secure
communication or do you assume another piece of equipment will provide
it? (e.g., at one point, WheelGroup was letting the BorderGuard routers
create a virtual private network (VPN), or "encrypted sleeve” as they used
to call it, provides much of the security).

PGP, MS-CAPI (RSA) and proprietary security services.

7. Do you provide an API to your communication infrastructure or to your
IDS? From C, C++, Java, Perl?

No.

8. How do you configure your system?

GUI to configure products.

9. Do you see any benefit to interoperatibilty with network management
tools or standards? Are you compliant with SNMP?

We do see benefits to this. We are compliant with SNMP.

10.What are your requirements for an intrusion detection standard?

58

We consider pre and post processing when discussing
standards. By pre, we mean parameters or data that is sent
before any kind of analysis is performed. For example,
parameters or directives can be sent to sensors to direct it to
report all indications of a port scan. A second example is
signatures of attacks, specifically, a standard format for
signatures of attack. By post, we mean everything else, such as
audit data, analysis data, reports, etc. Any IDS standard must
allow the system to operate in real time. We are interested in
standards for pre and post IDS data.

11.Would you see an IDS standard as a benefit to your business? If so,
how?

Yes, both vendor and customer benefits.

12.Do you have trademarks, patents, or licensing fees for your
communication framework?

IDS technology patents.

13.Is there anything else that you want to add?

NAI wants to meet with Stuart Staniford-Chen to exchange ideas
on IDS standards. They want to hear the opinions of the CIDF
group chair before making an assessment of IDS standards. We
are concerned about the chances of success versus failure for an
intrusion detection standard. This standardization effort will
take a considerable amount of resources and we need to plan
carefully how we spend our time and effort. Most successful
efforts standardize at the lower layers allowing companies to
compete at the higher (application) layers.

59

SAIC
0. What is the name, address, Web page address and CIDF meeting

attendees for this company?

Name: SAIC

Address: 10260 Campus Point Drive

San Diego, CA 92121

Web address: http://www.saic.com/it/cmds

Meeting attendees: David Drake, Robert Thuleen, Dan
Parker, Tommie Aycock

Meeting date: 8/5/98

1. What is the name of the product(s)?

Computer Misuse Detection System (CMDS)

2. What is the framework and what platforms do you currently support?

CMDS uses an expert system based on the CLIPS engine
developed by NASA. The system is written in C and accesses an
ORACLE database. Platforms supported 1) for the CMDS
Manager – Solaris 2.5.1 or higher, HP/UX 10.x, DG/UX B2
Security Option 4.12 and 2) for the CMDS agents are Solaris 2.5
or higher, HP/UX 10.x DG/UX B2 Security Option 4.12,
Windows NT 4.0 and trusted Solaris. Firewall agents supported
are: ANS Interlock, Raptor Eagle and Cybershield.

3. What is the data format on the wire? Is it documented? Is it
proprietary?

The data format on the wire is encrypted. It is not documented
for CMDS customers. The data format is proprietary and it is
smaller than audit data records.

60

4. What type of messages do you exchange (e.g., SNMP uses the GET, SET,
REPLY, and TRAP message types)?

CMDS exchanges TCP/IP messages in one direction – from the
CMDS agent to the CMDS manager.

5. What do you build on (directly on IP, on UDP, TCP, RPC, CORBA)?

Same as 4.

6. What do you use for security, such as secure communication? Do you
use your own cryptographic techniques to provide for secure
communication or do you assume another piece of equipment will provide
it? (e.g., at one point, WheelGroup was letting the BorderGuard routers
create a virtual private network (VPN), or "encrypted sleeve” as they used
to call it, provides much of the security).

Single DES

7. Do you provide an API to your communication infrastructure or to your
IDS? From C, C++, Java, Perl?

At this time, there is no API that allows users to get data from
CMDS. Users are interested in this feature. However, CMDS
uses S-expressions for its data format. The reason for this is
that CLIPS parses S-expressions. In addition, the CMDS data
format has the equivalent of CIDF SIDS. The audit records are
formatted in this way to make it easier for CLIPS to parse and
analyze it.

8. How do you configure your system?

Handling configuration is important. All raw data is sent from
the CMDS agents to the CMDS manager to be analyzed. The

61

configuration file for each CMDS agent contains the address of
the target CMDS manager. Raw audit records are shipped from
the CMDS agent to the CMDS manager. The CMDS manager
needs to be configured to know what type of information it is
receiving, for example, from an NT agent or from a Solaris agent.

9. Do you see any benefit to interoperatibilty with network management
tools or standards? Are you compliant with SNMP?

When an alert is uncovered, CMDS passes an SNMP trap to
Openview. There are two problems with using SNMP messages
for intrusion detection standards. The first is that some routers
and firewalls throw way SNMP messages to lessen their traffic
load. The second is that SNMP messages are limited in length.
Long GIDOs would be a problem.

10.What are your requirements for an intrusion detection standard?

There was some talk here about why the intrusion detection
companies would want to cooperate on a standard at all. The
obvious answers of interoperability and data sharing were
brought up which could encourage users to buy products and
grow the market.

David Drake discussed his vision for this standard as follows:
What is really needed here is enterprise wide protection and
monitoring. How can we monitor what is going on and get the
components to talk with one another? We need system wide
protection, that is, self-protection on the wire and self-protection
on the host. We are trying to build a trusted environment on top
of something that we can’t trust. At an abstract level, a security
management framework is the goal and should be the goal of the
standard. CIDF focuses on one piece to try to achieve this
objective.

11.Would you see an IDS standard as a benefit to your business? If so,
how?

62

A benefit that we perceive is a standard that would require
different IDS to have a common rule set for detecting an attack.
This is analogous to a standard on safety belts for automobiles.
You have different designs of safety belts, but all conform to the
standard.

12.Do you have trademarks, patents, or licensing fees for your
communication framework?

Yes, SAIC has trademarks and patents for CMDS. We don’t
charge any licensing fees for communication framework.

13.Is there anything else that you want to add?

We are checking into availability of resources to apply to a
standards effort. SAIC will get back to ORA on this issue.

